Mobile Application
Programing: 10S

Messaging

Application

@
e
®
)
L
o
<L

Movies

Pictures

1 -
W w10
=i]
Pihe 16 U 1L -

anTnIATDY

. y ; B X T
Sample Fileg ki e dcnn ot N R

Kopleatieww Controller (MVC

10}

AU.CSS t"/

Documents (2)

Movies

Pictures

Sample Fileg

Messaging

e

@
38

N
)

3

D
&
O
=

=
D
=

How do these happen”

Messaging

How do these happen”? Delegation

Messaging Options r:u_:1

Model

= [Delegates - a delegate property & delegation protocol
= Handlers - like single-method delegates but using a closure
» Handler Collection - a collection of handlers notified on events

n - centralized notification dissemination

Handler Delegate Handler Collection

I I .

Delegates il

® A delegate is an object that performs actions on the
behalf of another object

= A common use Is a data model object alerting a
of changes to its data, which then tells
objects about the change

®x Another use of them is a object having a
object interact with the program data model on its
behalf when the user triggers events

= O bits of code are required to properly set up both
sides of a delegate connection between two objects

import UIKit
protocol KnobDelegate: class 1- Delegate PrOtOCOI

{
func knob(knob: Knob, rotatedToAngle angle: Float)

} 2. Delegate Property

class Knob : UIView

{ 3. Delegate Invocation

private var _knobRect: CGRect = CGRectZero
private var _angle: Float = 3.0 % Float(M_PI) / 2.0

var angle: Float

get { return _angle }
set
{
_angle = newValue
setNeedsDisplay()

}

weak var delegate: KnobDelegate? = nil

override func touchesMoved(touches: NSSet, withEvent eventd UIEvent) The methOd invocation here' o=

let touch: UITouch = touches.anyObject() as UITouch
let touchPoint: CGPoint = touch.locationInView(selr)
let

{

touchAngle: Float = atan2f(
Float(touchPoint.y — _knobRect.midY), ifMiport UIKit
Float(touchPoint.x — _knobRect.midX))
@UIApplicationMain
angle = touchAngle class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
delegate?.knob(self, rotatedToAngle: angle) {
} var window: UIWindow?

override func drawRect(rect: CGRect) func application(application: UIApplication,
{ didFinishLaunchingWithOptions 1: [NSObject: AnyObjectl?) —> Bool
} {
window = UIWindow(frame: UIScreen.mainScreen().bounds)
window?.makeKeyAndVisible()

var knob: Knob = Knob(frame: window!.frame)
knob.backgroundColor = UIColor.darkGrayColor()
knob.delegate = self

window?.addSubview(knob)

4. Delegate Protocol Conformity

return true

}
5. Delegate Assignment

func knob(knob: Knob, rotatedToAngle angle: Float)
{

6. Delegate PrOtOCOI MethOd(S) , println("Knob rotated to angle: \(angle)")

Handlers i

mplemented similarly to delegates but use a closure

Keep event assignment and event code in the same
ocation In the code file spatially

Require 3 pieces of code instead of 6
= 2 on the sending side
= 1 on the recelving side

Closure capture relationships need to be carefully
considered to prevent !

Handlers |

class PaintingCollection {
private var _paintings: [Painting] = []

// MARK: Indexing

var paintingCount: Int {
return _paintings.count

}

// MARK: Element Access

func paintingWithIndex(paintingIndex: Int) —> Painting {
return _paintings[paintingIndex]

}

collection.paintingChangedHandler = {

func addPainting(painting: Painting) { [weak self] (paintingIndex: Int) in

//

} Y self?.thingsListView. reloadData()

func removePaintingWidthIndex(paintingIndex: Int) {
/] s
b

func addStroke(stroke: Stroke, toPainting paintingIndex: Int) {
// []
paintingChangedHandler?(paintingIndex)

// MARK: Events
var paintingChangedHandler: ((_ paintingIndex: Int) -> Void)?

Handler Collection i L
= Create a collection of handlers

= \Vhen notifying a single handler, notify all handlers

= Note that this makes asking for information
because all received data must be considered

x Example: Voting for president /l\

» Fach voter asked for vote
= \/oter returns preference

= Accounting of votes determines returned value

NSNotificationCenter I 1]

View Model

x Centralized system to register observers for named
notifications and allow other objects to post
notifications to the system

= Receivers may register / un-register as observers for
receiving notifications at any time

x Sender from receivers!

Cleanup: Essential! 2PN

= \\WVhen an object is no longer needed and should be
deallocated, ensure it has un-registered itself as an
observer. Otherwise, it will never be deallocated!

= [he observer relationship is a strong reference to the
object. When the object’s other connections are

removed, it will remain as NSNotificationCenter’s
reference Is still

®x .g. aview controller that has been removed from a
navigation controller will still be In memory if it is still an
observer for a notification in NSNotificationCenter

Messaging Options Fi]

MMMMM

Handler Delegate Handler. Collection

