
Mobile Application
Programing: iOS
Messaging

Application

Controller

View Model

User Action Notify

Update Update

Model View Controller (MVC)Application

Controller

View Model

User Action Notify

Update Update

Messaging

How do these happen?

Controller

View Model

User Action Notify

Update Update

Messaging

How do these happen? Delegation

Messaging Options
Delegates - a delegate property & delegation protocol

Handlers - like single-method delegates but using a closure

Handler Collection - a collection of handlers notified on events

NSNotificationCenter - centralized notification dissemination

Controller

View Model

Handler Delegate Handler Collection Notification Center

Delegates
A delegate is an object that performs actions on the
behalf of another object

A common use is a data model object alerting a
controller of changes to its data, which then tells view
objects about the change

Another use of them is a view object having a controller
object interact with the program data model on its
behalf when the user triggers events

6 bits of code are required to properly set up both
sides of a delegate connection between two objects

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(touches: NSSet, withEvent event: UIEvent)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func drawRect(rect: CGRect)
 {
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

The method invocation here…

goes here.

Implemented similarly to delegates but use a closure

Keep event assignment and event code in the same
location in the code file spatially

Require 3 pieces of code instead of 6

2 on the sending side

1 on the receiving side

Closure capture relationships need to be carefully
considered to prevent memory leaks!

Handlers

Handlers
class PaintingCollection {
 private var _paintings: [Painting] = []

 // MARK: Indexing
 var paintingCount: Int {
 return _paintings.count
 }

 // MARK: Element Access
 func paintingWithIndex(paintingIndex: Int) -> Painting {
 return _paintings[paintingIndex]
 }

 func addPainting(painting: Painting) {
 // ...
 }

 func removePaintingWidthIndex(paintingIndex: Int) {
 // ...
 }

 func addStroke(stroke: Stroke, toPainting paintingIndex: Int) {
 // ...
 paintingChangedHandler?(paintingIndex)
 }

 // MARK: Events
 var paintingChangedHandler: ((_ paintingIndex: Int) -> Void)?
}

collection.paintingChangedHandler = {
 [weak self] (paintingIndex: Int) in
 self?.thingsListView.reloadData()
}

Handler Collection
Create a collection of handlers

When notifying a single handler, notify all handlers

Note that this makes asking for information complex
because all received data must be considered

Example: Voting for president

Each voter asked for vote

Voter returns preference

Accounting of votes determines returned value

Controller

View Model

NSNotificationCenter

Centralized system to register observers for named
notifications and allow other objects to post
notifications to the system

Receivers may register / un-register as observers for
receiving notifications at any time

Sender can’t ask for information from receivers!

Controller

View Model

Cleanup: Essential!
When an object is no longer needed and should be
deallocated, ensure it has un-registered itself as an
observer. Otherwise, it will never be deallocated!

The observer relationship is a strong reference to the
object. When the object’s other connections are
removed, it will remain as NSNotificationCenter’s
reference is still active.

E.g. a view controller that has been removed from a
navigation controller will still be in memory if it is still an
observer for a notification in NSNotificationCenter

Messaging Options
Controller

View Model

Handler Delegate Handler Collection Notification Center

